Effects of exercise on autonomic cardiovascular control in individuals with chronic, motor-complete spinal cord injury: an exploratory randomised clinical trial (2024)

  • Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Baroreflex function after spinal cord injury. J Neurotrauma. 2012;29:2431–45.

    Article PubMed Google Scholar

  • Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology. 2013;81:723–8.

    Article PubMed PubMed Central Google Scholar

  • Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49:1298–306.

    Article PubMed CAS Google Scholar

  • Monahan KD, Dinenno FA, Tanaka H, Clevenger CM, DeSouza CA, Seals DR. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J Physiol. 2000;529:263–71.

    Article PubMed PubMed Central CAS Google Scholar

  • Madden KM, Lockhart C, Potter TF, Cuff D. Aerobic training restores arterial baroreflex sensitivity in older adults with type 2 diabetes, hypertension, and hypercholesterolemia. Clin J Sport Med. 2010;20:312–7.

    Article PubMed PubMed Central Google Scholar

  • Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, Barrow A, Bourne C, Carruthers P, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018;56:308–21.

    Article PubMed Google Scholar

  • Chiou SY, Clarke E, Lam C, Harvey T, Nightingale TE. Effects of arm-crank exercise on fitness and health in adults with chronic spinal cord injury: a systematic review. Front Physiol. 2022;13:831372.

    Article PubMed PubMed Central Google Scholar

  • Nightingale TE, Walhin JP, Thompson D, Bilzon JLJ. Impact of exercise on cardiometabolic component risks in spinal cord-injured humans. Med Sci Sports Exerc. 2017;49:2469–77.

    Article PubMed PubMed Central Google Scholar

  • Solinsky R, Draghici A, Hamner JW, Goldstein R, Taylor JA. High-intensity, whole-body exercise improves blood pressure control in individuals with spinal cord injury: a prospective randomized controlled trial. PLoS ONE. 2021;16:e0247576.

    Article PubMed PubMed Central CAS Google Scholar

  • Ditor DS, Macdonald MJ, Kamath MV, Bugaresti J, Adams M, McCartney N, et al. The effects of body-weight supported treadmill training on cardiovascular regulation in individuals with motor-complete SCI. Spinal Cord. 2005;43:664–73.

    Article PubMed CAS Google Scholar

  • Ditor DS, Kamath MV, MacDonald MJ, Bugaresti J, McCartney N, Hicks AL. Effects of body weight-supported treadmill training on heart rate variability and blood pressure variability in individuals with spinal cord injury. J Appl Physiol. 2005;98:1519–25.

    Article PubMed Google Scholar

  • Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 2006;44:341–51.

    Article PubMed CAS Google Scholar

  • Carter JB, Banister EW, Blaber AP. Effect of endurance exercise on autonomic control of heart rate. Sports Med. 2003;33:33–46.

    Article PubMed Google Scholar

  • Xu D, Wang H, Chen S, Ross S, Liu H, Olivencia-Yurvati A, et al. Aerobic exercise training improves orthostatic tolerance in aging humans. Med Sci Sports Exerc. 2017;49:728–35.

    Article PubMed Google Scholar

  • Krassioukov AV, Currie KD, Hubli M, Nightingale TE, Alrashidi AA, Ramer L, et al. Effects of exercise interventions on cardiovascular health in individuals with chronic, motor complete spinal cord injury: protocol for a randomised controlled trial [Cardiovascular Health/Outcomes: Improvements Created by Exercise and education in SCI (CHOICES) Study]. BMJ Open. 2019;9:e023540.

    Article PubMed PubMed Central Google Scholar

  • Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535–46.

    Article PubMed PubMed Central Google Scholar

  • Reference Values for Arterial Stiffness C. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31:2338–50.

  • Harkema SJ, Ferreira CK, van den Brand RJ, Krassioukov AV. Improvements in orthostatic instability with stand locomotor training in individuals with spinal cord injury. J Neurotrauma. 2008;25:1467–75.

    Article PubMed PubMed Central Google Scholar

  • Alrashidi AA, Nightingale TE, Currie KD, Hubli M, MacDonald MJ, Hicks AL, et al. Exercise improves cardiorespiratory fitness, but not arterial health, after spinal cord injury: the CHOICES trial. J Neurotrauma. 2021;38:3020–9.

    Article PubMed Google Scholar

  • Currie KD, Wong SC, Warburton DE, Krassioukov AV. Reliability of the sit-up test in individuals with spinal cord injury. J Spinal Cord Med. 2015;38:563–6.

  • Dorey TW, O’Brien MW, Robinson SA, Kimmerly DS. Knee-high compression socks minimize head-up tilt-induced cerebral and cardiovascular responses following dynamic exercise. Scand J Med Sci Sports. 2018;28:1766–74.

    Article PubMed CAS Google Scholar

  • Harms MP, Wesseling KH, Pott F, Jenstrup M, Van Goudoever J, Secher NH, et al. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin Sci. 1999;97:291–301.

    Article CAS Google Scholar

  • Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996;93:1043–65.

  • Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–86.

    Article PubMed CAS Google Scholar

  • Dorey TW, O’Brien MW, Kimmerly DS. The influence of aerobic fitness on electrocardiographic and heart rate variability parameters in young and older adults. Auton Neurosci. 2019;217:66–70.

    Article PubMed Google Scholar

  • Dorey TW, Walter M, Krassioukov AV. Reduced reflex autonomic responses following intradetrusor OnabotulinumtoxinA Injections: a pre-/post-study in individuals with cervical and upper thoracic spinal cord injury. Front Physiol. 2021;12:796277.

    Article PubMed PubMed Central Google Scholar

  • Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.

    Article PubMed PubMed Central Google Scholar

  • Zhang R, Iwasaki K, Zuckerman JH, Behbehani K, Crandall CG, Levine BD. Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans. J Physiol. 2002;543:337–48.

    Article PubMed PubMed Central CAS Google Scholar

  • Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 2000;18:7–19.

    Article PubMed CAS Google Scholar

  • Parlow J, Viale JP, Annat G, Hughson R, Quintin L. Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses. Hypertension. 1995;25:1058–68.

    Article PubMed CAS Google Scholar

  • O’Brien MW, Johns JA, Dorey TW, Frayne RJ, Fowles JR, Mekary S, et al. Meeting international aerobic physical activity guidelines is associated with enhanced cardiovagal baroreflex sensitivity in healthy older adults. Clin Auton Res. 2020;30:139–48.

    Article PubMed Google Scholar

  • Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863.

    Article PubMed PubMed Central Google Scholar

  • La Rovere MT, Pinna GD. Beneficial effects of physical activity on baroreflex control in the elderly. Ann Noninvasive Electrocardiol. 2014;19:303–10.

    Article PubMed PubMed Central Google Scholar

  • Winker R, Barth A, Bidmon D, Ponocny I, Weber M, Mayr O, et al. Endurance exercise training in orthostatic intolerance: a randomized, controlled trial. Hypertension. 2005;45:391–8.

    Article PubMed CAS Google Scholar

  • Ray CA, Hume KM. Sympathetic neural adaptations to exercise training in humans: insights from microneurography. Med Sci Sports Exerc. 1998;30:387–91.

    Article PubMed CAS Google Scholar

  • Smit AA, Halliwill JR, Low PA, Wieling W. Pathophysiological basis of orthostatic hypotension in autonomic failure. J Physiol. 1999;519:1–10.

    Article PubMed PubMed Central CAS Google Scholar

  • Alajam R, Alqahtani AS, Liu W. Effect of body weight-supported treadmill training on cardiovascular and pulmonary function in people with spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil. 2019;25:355–69.

    Article PubMed PubMed Central Google Scholar

  • Vivodtzev I, Taylor JA. Cardiac, autonomic, and cardiometabolic impact of exercise training in spinal cord injury: a qualitative review. J Cardiopulm Rehabil Prev. 2021;41:6–12.

    Article PubMed PubMed Central Google Scholar

  • Ormezzano O, Cracowski JL, Quesada JL, Pierre H, Mallion JM, Baguet JP. EVAluation of the prognostic value of BARoreflex sensitivity in hypertensive patients: the EVABAR study. J Hypertens. 2008;26:1373–8.

    Article PubMed CAS Google Scholar

  • La Rovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction. A prospective study. Circulation. 1988;78:816–24.

    Article PubMed Google Scholar

  • Deley G, Picard G, Taylor JA. Arterial baroreflex control of cardiac vagal outflow in older individuals can be enhanced by aerobic exercise training. Hypertension. 2009;53:826–32.

    Article PubMed CAS Google Scholar

  • Soriano JE, Romac R, Squair JW, Barak OF, Sarafis ZK, Lee AHX, et al. Passive leg cycling increases activity of the cardiorespiratory system in people with tetraplegia. Appl Physiol Nutr Metab. 2022;47:269–77.

    Article PubMed CAS Google Scholar

  • Mesbah S, Legg Ditterline B, Wang S, Wu S, Weir J, Wecht J et al. Novel clinimetric toolset to quantify the stability of blood pressure and its application to evaluate cardiovascular function after spinal cord injury. Front Anal Sci. 2021;1:701891.

  • Hutchinson MJ, Goosey-Tolfrey VL. Rethinking aerobic exercise intensity prescription in adults with spinal cord injury: time to end the use of “moderate to vigorous” intensity? Spinal Cord. 2022;60:484–90.

    Article PubMed Google Scholar

  • Effects of exercise on autonomic cardiovascular control in individuals with chronic, motor-complete spinal cord injury: an exploratory randomised clinical trial (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Zonia Mosciski DO

    Last Updated:

    Views: 5926

    Rating: 4 / 5 (71 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Zonia Mosciski DO

    Birthday: 1996-05-16

    Address: Suite 228 919 Deana Ford, Lake Meridithberg, NE 60017-4257

    Phone: +2613987384138

    Job: Chief Retail Officer

    Hobby: Tai chi, Dowsing, Poi, Letterboxing, Watching movies, Video gaming, Singing

    Introduction: My name is Zonia Mosciski DO, I am a enchanting, joyous, lovely, successful, hilarious, tender, outstanding person who loves writing and wants to share my knowledge and understanding with you.